5 research outputs found

    Comparative investigation of two different self-organizing map-based wavelength selection approaches for analysis of binary mixtures with strongly overlapping spectral lines

    Get PDF
    Purpose: To demonstrate the ability and investigate the performance of two different wavelength selection approaches based on self-organizing map (SOM) technique in partial least-squares (PLS) regression for analysis of pharmaceutical binary mixtures with strongly overlapping spectra.Methods: Two different variable selection methods were compared, namely, SOM1-PLS and SOM2- PLS. The main difference between these methods involved the structure of neurons in input layer and the algorithm for variable selection. Adjustable parameters for each technique were optimized for better comparison. The performance of these methods was statistically verified for predictive ability using both synthetic mixtures and a real combination product of sulfamethoxazole (SMX) and trimethoprim (TMP), which exhibited strongly overlapping of spectral lines.Results: The results obtained indicate that SOM2-PLS was more efficient than SOM1-PLS technique with 30 and 6 % improvement in predictive ability for SMX and TMP, respectively. Furthermore, the mean difference between the results obtained from SOM2-PLS method and those from the official method was not statistically significant as p-value was more than 0.01.Conclusion: Although, SOM2-PLS method is more efficient than SOM1-PLS method for the analysis of pharmaceutical binary mixtures with severely overlapping spectra, some problems associated with SOM2-PLS technique include difficult computations of some parameters.Keywords: Co-trimoxazole, Self-organizing map, Wavelength selection, Pharmaceutical analysis, Overlapping spectral line

    āđ€āļāļĄāļāļēāļĢāļĻāļķāļāļĐāļēāļ”āđ‰āļēāļ™āļāļēāļĢāđāļžāļ—āļĒāđŒāđāļĨāļ°āļŠāļļāļ‚āļ āļēāļž Education Game in Health and Medicine

    Get PDF
    Learning through electronic media has become popular nowadays and it isalso widely used for teaching in Thailand. The learning process isdeveloped by including contents in the game which makes the class funand the student knowledge is gained. Moreover, the student learning canbe enhanced with this media. In medical and health area, learning throughgames was used for practice-based learning from professional experiences,simulated situations, and case studies. The benefit of learning throughgames is that the low budget implement since the student can be playingmany times without risk of harm and they are also educated according tolearning objective by the interaction among the players in the game. Thus,learning games in the field of medicine and health have been the mostpopular and widespread in development. Furthermore, learning throughgames is used to disseminate knowledge to the general public and to helpmedical staffs to repeat practicing and learning patient care. This isparticularly useful when faced with real patients. The staffs will be able toprovide appropriate care with no damage to life and health of the patient.Keywords: game, education, health, medicin

    Physicochemical analysis and determination of di- and tri-saccharide content in Longan, Litchi and Siam weed honeys of Thailand

    No full text
    <p>Honeys produced by bees from the nectars of longan, litchi and Siam weed growing in Thailand were analyzed for physicochemical profiles (moisture, Brix%, soluble solids, density, viscosity, pH, free acid, electrical conductivity, HMF, DN, proline, color, flavonoid and antioxidant activities) and their carbohydrates quantified as monosaccharides, disaccharides and trisaccharides. All physicochemical parameters met the regulation requirements under the Codex Alimentarius Standard, EU Council and directives legislation of the Ministry of Public Health of Thailand, except the HMF value of one sample. The conductivity, color [Abs]<sub>450</sub> and antioxidant activity were parameters that showed that there are significant differences in means between the groups of honey samples based on one way analysis of variance (ANOVA) (<i>p</i> < 0.05). The amounts of palatinose and isomaltose in the honey samples were statistical significantly different (ANOVA, <i>p</i> < 0.05). The differences between longan, litchi and Siam weed honeys by principle component analysis visible from the di- and trisaccharide profiles from an Rtx-65TG column were shown to be different from those from an SPB-1 column. The PC1 from the Rtx-65TG column profile was a linear combination that summarized 54.0% of the cumulative proportion of variance. The differences between the honey samples appeared to stem from many parameters and quantification compositions of the saccharides. The palatinose and isomaltose in longan honey were suggested to be markers for its authentication.</p

    Artificial Neural Network for Solid Dosage Form Applications-āđ‚āļ„āļĢāļ‡āļ‚āđˆāļēāļĒāļ›āļĢāļ°āļŠāļēāļ—āđ€āļ—āļĩāļĒāļĄāļŠāļģāļŦāļĢāļąāļšāļāļēāļĢāļ›āļĢāļ°āļĒāļļāļāļ•āđƒāđŒāļŠāđ‰āđƒāļ™āđ€āļ āļŠāļąāļŠāļ āļąāļ“āļ‘āđŒāļĢāļđāļ›āđāļšāļšāļ‚āļ­āļ‡āđāļ‚āđ‡āļ‡

    No full text
    The artificial neural network (ANN) is a mathematical structure designed to mimic the information processing functions of a network of neurons in the brain, which can learn from experience. Briefly, the general structure of ANN has input layer, hidden layer, and output layer. Each layer has a few units corresponding to neurons. The units in neighboring layers fully interconnected with links between two units are called weights. ANNs usually learn or train through experience with back propagation algorithm. The ANN model has predicted and formulated optimization. The ANN models can be used to predict the response for new experimental conditions after the models are trained. ANN technique can be used for optimizing tablet formulation effectively. Keywords: artificial neural network, solid dosage formāļšāļ—āļ„āļąāļ”āļĒāđˆāļ­āđ‚āļ„āļĢāļ‡āļ‚āđˆāļēāļĒāļ›āļĢāļ°āļŠāļēāļ—āđ€āļ—āļĩāļĒāļĄ (Artificial neural network) āļ„āļ·āļ­ āđ‚āļĄāđ€āļ”āļĨāļ—āļēāļ‡āļ„āļ“āļīāļ•āļĻāļēāļŠāļ•āļĢāđŒāļ—āļĩāđˆāļ­āļ­āļāđāļšāļšāđ€āļžāļ·āđˆāļ­āđ€āļĨāļĩāļĒāļ™āđāļšāļšāļāļēāļĢāļ›āļĢāļ°āļĄāļ§āļĨāļœāļĨāļ‚āđ‰āļ­āļĄāļđāļĨāļ‚āļ­āļ‡āđ€āļ„āļĢāļ·āļ­āļ‚āđˆāļēāļĒāđ€āļ‹āļĨāļĨāđŒāļ›āļĢāļ°āļŠāļēāļ—āđƒāļ™āļŠāļĄāļ­āļ‡āļĄāļ™āļļāļĐāļĒāđŒāđ‚āļ”āļĒāđ€āļĢāļĩāļĒāļ™āļĢāļđāđ‰āļˆāļēāļāļ›āļĢāļ°āļŠāļšāļāļēāļĢāļ“āđŒāđāļĨāļ°āļāļēāļĢāļāļķāļāļāļ™ āđ‚āļ„āļĢāļ‡āļ‚āđˆāļēāļĒāļ›āļĢāļ°āļŠāļēāļ—āđ€āļ—āļĩāļĒāļĄāļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒāļŠāļąāļ™āđ‰ āļ™āļģāļŠāļąāļāļāļēāļ“āđ€āļ‚āđ‰āļē (input layer) āļŠāļąāļ™āđ‰ āļ‹āđˆāļ­āļ™ (hidden layer) āđāļĨāļ°āļŠāļąāļ™āđ‰ āļ™āļģāļŠāļąāļāļāļēāļ“āļ­āļ­āļ (output layer) āđ‚āļŦāļ™āļ” (node) āđƒāļ™āđāļ•āđˆāļĨāļ°āļŠāļąāđ‰āļ™āđ€āļ—āđˆāļēāļāļąāļšāļ•āļąāļ§āđāļ›āļĢāļ—āļĩāđˆāļ•āđ‰āļ­āļ‡āļāļēāļĢāļĻāļķāļāļĐāļē āļˆāļģāļ™āļ§āļ™āļŠāļąāđ‰āļ™āđāļĨāļ°āđ‚āļŦāļ™āļ”āļ‚āļ­āļ‡āļŠāļąāđ‰āļ™āļ‹āđˆāļ­āļ™āļ‚āļķāđ‰āļ™āļāļąāļšāļ„āļ§āļēāļĄāļ‹āļąāļšāļ‹āđ‰āļ­āļ™āļ‚āļ­āļ‡āļ›āļąāļāļŦāļē āļŠāļąāđ‰āļ™āļ™āļģāļŠāļąāļāļāļēāļ“āđ€āļ‚āđ‰āļēāđ€āļŠāļ·āđˆāļ­āļĄāđ‚āļĒāļ‡āļāļąāļšāļ„āđˆāļēāļ™āđ‰āļģāļŦāļ™āļąāļ (weight) āđ‚āļ„āļĢāļ‡āļ‚āđˆāļēāļĒāļ›āļĢāļ°āļŠāļēāļ—āđ€āļ—āļĩāļĒāļĄāļ­āļēāļĻāļąāļĒāļāļēāļĢāđ€āļĢāļĩāļĒāļ™āļĢāļđāđ‰āđāļĨāļ°āļāļķāļāļāļ™āļœāđˆāļēāļ™āļ›āļĢāļ°āļŠāļšāļāļēāļĢāļ“āđŒ āļ‹āļķāđˆāļ‡āļĄāļĩāļ‚āļąāļ™āđ‰ āļ•āļ­āļ™āļāļēāļĢāļāļķāļāļāļ™ (training algorithm)āļĄāļēāļāļĄāļēāļĒ āđāļ•āđˆāļ—āļĩāđˆāđƒāļŠāđ‰āļĄāļēāļāļ—āļĩāđˆāļŠāļļāļ”āļ„āļ·āļ­ āļ‚āļąāļ™āđ‰ āļāļēāļĢāļāļķāļāļ­āļšāļĢāļĄāđāļšāļšāļĒāđ‰āļ­āļ™āļāļĨāļąāļš (back propagationlearning) āđ‚āļ„āļĢāļ‡āļ‚āđˆāļēāļĒāļ›āļĢāļ°āļŠāļēāļ—āđ€āļ—āļĩāļĒāļĄāļŠāļēāļĄāļēāļĢāļ–āļ—āļģāļ™āļēāļĒāđāļĨāļ°āđƒāļŠāđ‰āļ—āļģāļ­āļ­āļŸāļ•āļīāđ„āļĄāđ€āļ‹āļŠāļąāļ™āđˆ āđ€āļžāļ·āđˆāļ­āļžāļąāļ’āļ™āļēāļ•āļģāļĢāļąāļšāđ€āļ āļŠāļąāļŠāļ āļąāļ“āļ‘āđŒ āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰ āļĒāļąāļ‡āđƒāļŠāđ‰āļ—āļģāļ™āļēāļĒāļ›āļąāļˆāļˆāļąāļĒāļ•āļ­āļšāļŠāļ™āļ­āļ‡āļŠāļģāļŦāļĢāļąāļšāļŠāļ āļēāļ§āļ°āļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āđƒāļŦāļĄāđˆ āđ† āļŦāļĨāļąāļ‡āļˆāļēāļāļ—āļĩāđˆāđ‚āļĄāđ€āļ”āļĨāļœāđˆāļēāļ™āļāļēāļĢāļāļķāļāļāļ™āđāļĨāđ‰āļ§ āđ€āļ—āļ„āļ™āļīāļ„āļ™āļĩāđ‰āļ™āļģāļĄāļēāđƒāļŠāđ‰āđ„āļ”āđ‰āļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļŠāļģāļŦāļĢāļąāļšāđ€āļ āļŠāļąāļŠāļ āļąāļ“āļ‘āđŒāļĢāļđāļ›āđāļšāļšāļ‚āļ­āļ‡āđāļ‚āđ‡āļ‡āļŠāļ™āļīāļ”āļĢāļąāļšāļ›āļĢāļ°āļ—āļēāļ™āļ„āļģāļŠāļģāļ„āļąāļ: āđ‚āļ„āļĢāļ‡āļ‚āđˆāļēāļĒāļ›āļĢāļ°āļŠāļēāļ—āđ€āļ—āļĩāļĒāļĄ, āđ€āļ āļŠāļąāļŠāļ āļąāļ“āļ‘āđŒāļĢāļđāļ›āđāļšāļšāļ‚āļ­āļ‡āđāļ‚āđ‡
    corecore